单片有源像素传感器 (MAPS) [ 1 ] 将传感器包含在与电子元件相同的 CMOS 基板中,它具有工业标准 CMOS 处理的所有优点,避免了粒子物理实验中常用的凸块键合混合像素传感器的生产复杂性和高成本,因此特别具有吸引力。今天,MAPS 代表着一项成熟的技术,其性能可与混合硅像素传感器相媲美。事实上,MAPS 已经在大型 LHC 实验中使用[ 2 ]。CERN 高亮度 LHC 项目期间预计将出现大量事件堆积,这需要几十皮秒的计时能力[ 3 ]。这种计时水平将在 ATLAS [ 4 ] 和 CMS [ 5 ] 升级探测器中通过大约 1 毫米粗空间粒度的计时层实现。在开发这项成熟技术的同时,粒子物理学界正在尝试为未来项目开发具有高空间分辨率和同等计时能力的硅传感器。在 [6] 中可以找到对当前这方面努力的最新回顾。该研究小组正在尝试开发具有皮秒时间能力的 MAPS。利用商用 SG13G2 IHP 130 nm 工艺 [7],我们制作了一系列单片原型,这些原型具有速度极快且噪声极低的 SiGe HBT 前端电子器件,使用没有内部增益层的标准 PN 结传感器可实现低至 36 ps 的时间分辨率 [8-12]。这条研究路线源于 MONOLITH H2020 ERC Advanced 项目 [13],该项目利用新型多 PN 结 PicoAD 传感器 [14],通过连续深增益层提供的信噪比增强实现皮秒级的时间分辨率。[15] 和 [16] 报告了使用 PicoAD 概念验证单片原型获得的结果。最近,MONOLITH 项目的第二个单片硅像素矩阵原型采用 SG13G2 IHP 工艺生产。ASIC 包含 [ 12 ] 前端电子器件的改进,旨在提高操作能力。在制造实现增益层的特殊 PicoAD 晶圆的同时,还使用厚度为 50 µm 的外延层晶圆(电阻率为 350 Ω cm)生产了带有标准 PN 结传感器的版本。在本文中,我们展示了使用不带内部增益层的第二个 MONOLITH 原型获得的测试光束结果。
主要关键词